Discrete group actions on 3-manifolds and embeddable Cayley complexes
Autor: | Georgakopoulos, Agelos, Kontogeorgiou, George |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that a group $\Gamma$ admits a discrete topological (equivalently, smooth) action on some simply-connected 3-manifold if and only if $\Gamma$ has a Cayley complex embeddable -- with certain natural restrictions -- in one of the following four 3-manifolds: (i) $\mathbb{S}^3$, (ii) $\mathbb{R}^3$, (iii) $\mathbb{S}^2 \times \mathbb{R}$, (iv) the complement of a tame Cantor set in $\mathbb{S}^3$. |
Databáze: | arXiv |
Externí odkaz: |