On the generalization of classical Zernike system
Autor: | Gonera, Cezary, Gonera, Joanna, Kosinski, Piotr |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We generalize the results obtained recently (Nonlinearity \underline{36} (2023), 1143) by providing a very simple proof of the superintegrability of the Hamiltonian $H=\vec{p}\,^{2}+F(\vec{q}\cdot\vec{p})$, $\vec{q}, \vec{p}\in\mathbb{R}^{2}$, for any analytic function $F$. The additional integral of motion is constructed explicitly and shown to reduce to a polynomial in canonical variables for polynomial $F$. The generalization to the case $\vec{q}, \vec{p}\in \mathbb{R}^{n}$ is sketched. Comment: 9 pages, no figures; pasections reorganized, references updated, some misprints corrected |
Databáze: | arXiv |
Externí odkaz: |