Autor: |
Albu, Ionuţ-Alexandru, Spînu, Stelian |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 1, 2022 ISSN 2286-3540 |
Druh dokumentu: |
Working Paper |
Popis: |
Automatic identification of emotions expressed in Twitter data has a wide range of applications. We create a well-balanced dataset by adding a neutral class to a benchmark dataset consisting of four emotions: fear, sadness, joy, and anger. On this extended dataset, we investigate the use of Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT) for emotion recognition. We propose a novel ensemble model by combining the two BERT and SVM models. Experiments show that the proposed model achieves a state-of-the-art accuracy of 0.91 on emotion recognition in tweets. |
Databáze: |
arXiv |
Externí odkaz: |
|