Emotion Detection From Tweets Using a BERT and SVM Ensemble Model

Autor: Albu, Ionuţ-Alexandru, Spînu, Stelian
Rok vydání: 2022
Předmět:
Zdroj: U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 1, 2022 ISSN 2286-3540
Druh dokumentu: Working Paper
Popis: Automatic identification of emotions expressed in Twitter data has a wide range of applications. We create a well-balanced dataset by adding a neutral class to a benchmark dataset consisting of four emotions: fear, sadness, joy, and anger. On this extended dataset, we investigate the use of Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT) for emotion recognition. We propose a novel ensemble model by combining the two BERT and SVM models. Experiments show that the proposed model achieves a state-of-the-art accuracy of 0.91 on emotion recognition in tweets.
Databáze: arXiv