Movable cones of complete intersections of multidegree one on products of projective spaces

Autor: Hoff, Michael, Stenger, Isabel, Yáñez, José Ignacio
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We study Calabi-Yau manifolds which are complete intersections of hypersurfaces of multidegree $1$ in an $m$-fold product of $n$-dimensional projective spaces. Using the theory of Coxeter groups, we show that the birational automorphism group of such a Calabi-Yau manifold $X$ is infinite and a free product of copies of $\mathbb{Z}$ . Moreover, we give an explicit description of the boundary of the movable cone $\overline{\operatorname{Mov}}(X)$. In the end, we consider examples for the general and non-general case and picture the movable cone and the fundamental domain for the action of $\operatorname{Bir}(X)$.
Comment: 26 pages; minor changes
Databáze: arXiv