Synthetic versus distributional lower Ricci curvature bounds

Autor: Kunzinger, Michael, Oberguggenberger, Michael, Vickers, James A.
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the Royal Society of Edinburgh: Section A Mathematics 154 (2024) 1406-1430
Druh dokumentu: Working Paper
DOI: 10.1017/prm.2023.70
Popis: We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C^2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C^1$ and that the converse holds for $C^{1,1}$-metrics under an additional convergence condition on regularisations of the metric.
Comment: 23 pages, small correction in the proof of Th. 4.3
Databáze: arXiv