Self-dual Maxwell-Chern-Simons solitons in a parity-invariant scenario

Autor: De Lima, W. B., De Fabritiis, P.
Rok vydání: 2022
Předmět:
Zdroj: Phys. Lett. B 833, 137326 (2022)
Druh dokumentu: Working Paper
DOI: 10.1016/j.physletb.2022.137326
Popis: We present a self-dual parity-invariant $U(1) \times U(1)$ Maxwell-Chern-Simons scalar $\text{QED}_3$. We show that the energy functional admits a Bogomol'nyi-type lower bound, whose saturation gives rise to first order self-duality equations. We perform a detailed analysis of this system, discussing its main features and exhibiting explicit numerical solutions corresponding to finite-energy topological vortices and non-topological solitons. The mixed Chern-Simons term plays an important role here, ensuring the main properties of the model and suggesting possible applications in condensed matter.
Comment: 9 pages, 8 figures. Published in PLB
Databáze: arXiv