Self-dual Maxwell-Chern-Simons solitons in a parity-invariant scenario
Autor: | De Lima, W. B., De Fabritiis, P. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Phys. Lett. B 833, 137326 (2022) |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.physletb.2022.137326 |
Popis: | We present a self-dual parity-invariant $U(1) \times U(1)$ Maxwell-Chern-Simons scalar $\text{QED}_3$. We show that the energy functional admits a Bogomol'nyi-type lower bound, whose saturation gives rise to first order self-duality equations. We perform a detailed analysis of this system, discussing its main features and exhibiting explicit numerical solutions corresponding to finite-energy topological vortices and non-topological solitons. The mixed Chern-Simons term plays an important role here, ensuring the main properties of the model and suggesting possible applications in condensed matter. Comment: 9 pages, 8 figures. Published in PLB |
Databáze: | arXiv |
Externí odkaz: |