A non-commutative Reidemeister-Turaev torsion of homology cylinders
Autor: | Nozaki, Yuta, Sato, Masatoshi, Suzuki, Masaaki |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Trans. Amer. Math. Soc., electronically published on April 19, 2023 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/tran/8925 |
Popis: | We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the $K_1$-group of the $I$-adic completion of the group ring $\mathbb{Q}\pi_1\Sigma_{g,1}$, and prove that its reduction to $\widehat{\mathbb{Q}\pi_1\Sigma_{g,1}}/\hat{I}^{d+1}$ is a finite-type invariant of degree $d$. We also show that the $1$-loop part of the LMO homomorphism and the Enomoto-Satoh trace can be recovered from the leading term of our torsion. Comment: 48 pages, 7 figures |
Databáze: | arXiv |
Externí odkaz: |