Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs

Autor: Greaves, Gary R. W., Syatriadi, Jeven
Rok vydání: 2022
Předmět:
Zdroj: Journal of Combinatorial Theory, Series A, Volume 201, January 2024, 105812
Druh dokumentu: Working Paper
DOI: 10.1016/j.jcta.2023.105812
Popis: We show that the maximum cardinality of an equiangular line system in $\mathbb R^{18}$ is at most $59$. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial $(x-22)(x-2)^{42} (x+6)^{15} (x+8)^2$.
Comment: 26 pages. Updated to match the published, journal version
Databáze: arXiv