Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs
Autor: | Greaves, Gary R. W., Syatriadi, Jeven |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Combinatorial Theory, Series A, Volume 201, January 2024, 105812 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jcta.2023.105812 |
Popis: | We show that the maximum cardinality of an equiangular line system in $\mathbb R^{18}$ is at most $59$. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial $(x-22)(x-2)^{42} (x+6)^{15} (x+8)^2$. Comment: 26 pages. Updated to match the published, journal version |
Databáze: | arXiv |
Externí odkaz: |