On rank in algebraic closure

Autor: Lampert, Amichai, Ziegler, Tamar
Rok vydání: 2022
Předmět:
Zdroj: Sel. Math. New Ser. 30, 15 (2024)
Druh dokumentu: Working Paper
DOI: 10.1007/s00029-023-00903-5
Popis: Let $ {\mathbf k} $ be a field and $Q\in {\mathbf k}[x_1, \ldots, x_s]$ a form (homogeneous polynomial) of degree $d>1.$ The ${\mathbf k}$-Schmidt rank $rk_{\mathbf k}(Q)$ of $Q$ is the minimal $r$ such that $Q= \sum_{i=1}^r R_iS_i$ with $R_i, S_i \in {\mathbf k}[x_1, \ldots, x_s]$ forms of degree $4$. This result has immediate consequences for counting integer points (when $ {\mathbf k} $ is a number field) or prime points (when $ {\mathbf k} = \mathbb Q $) of the variety $ \{Q=0\} $ assuming $ rk_{\mathbf k} (Q) $ is large.
Comment: Published version, simplified proofs and corrected errors
Databáze: arXiv