Autor: |
Khatua, J., Pregelj, M., Elghandour, A., Jaglicic, Z., Klingeler, R., Zorko, A., Khuntia, P. |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Physical Review B 106, 104408 (2022) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1103/PhysRevB.106.104408 |
Popis: |
Frustration, spin correlations and interplay between competing degrees of freedom are some of the key ingredients that underlie exotic states with fractional excitations in quantum materials. Rare-earth based two dimensional magnetic lattice wherein crystal electric field, spin-orbit coupling, anisotropy and electron correlation between rare-earth moments offer a new paradigm in this context. Herein, we present crystal structure, magnetic susceptibility and specific heat accompanied by crystal electric field calculations on the polycrystalline sample of Ba3RB9O18 (R = Yb, Er) in which R3+ ions form a perfect triangular lattice without anti-site disorder. The localized R3+ spins show neither long-range order nor spin-glass state down to 1.9 K in Ba3RB9O18. Magnetization data reveal a pseudospin Jeff = 1/2 ( Yb3+) in the Kramers doublet state and a weak antiferromagnetic interaction between Jeff = 1/2 moments in the Yb variant. On the other hand, the effective moment {\mu}eff = 8.8 {\mu}B was obtained from the Curie-Weiss fit of the low-temperature susceptibility data of Er variant suggests the admixture of higher crystal electric field states with the ground state. The Curie-Weiss fit of low-temperature susceptibility data for Er system unveils the presence of a relatively strong antiferromagnetic interaction between Er3+ moments compared to its Yb3+ analog. Ba3ErB9O18 does not show long-range magnetic ordering down to 500 mK. Furthermore, our crystal electric field calculations based on magnetization data of Ba3ErB9O18 suggest the presence of a small gap between the ground and first excited Kramers doublets. The broad maximum around 4 K in magnetic specific heat in zero-field is attributed to the thermal population of the first CEF excited state in Ba3ErB9O18, which is consistent with our CEF calculations. |
Databáze: |
arXiv |
Externí odkaz: |
|