Autor: |
Fabiani, Filippo, Franci, Barbara, Sagratella, Simone, Schmidt, Martin, Staudigl, Mathias |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We consider potential games with mixed-integer variables, for which we propose two distributed, proximal-like equilibrium seeking algorithms. Specifically, we focus on two scenarios: i) the underlying game is generalized ordinal and the agents update through iterations by choosing an exact optimal strategy; ii) the game admits an exact potential and the agents adopt approximated optimal responses. By exploiting the properties of integer-compatible regularization functions used as penalty terms, we show that both algorithms converge to either an exact or an $\epsilon$-approximate equilibrium. We corroborate our findings on a numerical instance of a Cournot oligopoly model. |
Databáze: |
arXiv |
Externí odkaz: |
|