A Note on the Gessel Numbers
Autor: | Mikić, Jovan |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Gessel number $P(n,r)$ represents the number of lattice paths in a plane with unit horizontal and vertical steps from $(0,0)$ to $(n+r,n+r-1)$ that never touch any of the points from the set $\{(x,x)\in \mathbb{Z}^2: x \geq r\}$. In this paper, we use combinatorial arguments to derive a recurrence relation between $P(n,r)$ and $P(n-1,r+1)$. Also, we give a new proof for a well-known closed formula for $P(n,r)$. Moreover, a new combinatorial interpretation for the Gessel numbers is presented. Comment: 7 pages, no figures |
Databáze: | arXiv |
Externí odkaz: |