A Note on the Gessel Numbers

Autor: Mikić, Jovan
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: The Gessel number $P(n,r)$ represents the number of lattice paths in a plane with unit horizontal and vertical steps from $(0,0)$ to $(n+r,n+r-1)$ that never touch any of the points from the set $\{(x,x)\in \mathbb{Z}^2: x \geq r\}$. In this paper, we use combinatorial arguments to derive a recurrence relation between $P(n,r)$ and $P(n-1,r+1)$. Also, we give a new proof for a well-known closed formula for $P(n,r)$. Moreover, a new combinatorial interpretation for the Gessel numbers is presented.
Comment: 7 pages, no figures
Databáze: arXiv