How to construct Gorenstein projective modules relative to complete duality pairs over Morita rings
Autor: | Ma, Yajun, Lü, Jiafeng, Li, Huanhuan, Hu, Jiangsheng |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0219498824501536 |
Popis: | Let $\Delta =\left(\begin{smallmatrix} A & {_AN_B}\\ {_BM_A} & B \\\end{smallmatrix}\right)$ be a Morita ring with $M\otimes_{A}N=0=N\otimes_{B}M$.We first study how to construct (complete) duality pairs of $\Delta$-modules using (complete) duality pairs of $A$-modules and $B$-modules, generalizing the result of Mao (Comm. Algebra, 2020, 12: 5296--5310) about the duality pairs over a triangular matrix ring. Moreover, we construct Gorenstein projective modules relative to complete duality pairs of $\Delta$-modules. Finally, we give an application to Ding projective modules. Comment: 18 pages. All comments and suggestions are welcome! |
Databáze: | arXiv |
Externí odkaz: |