The Grothendieck algebras of certain smash product semisimple Hopf algebras
Autor: | Wang, Zhihua, Liu, Gongxiang, Li, Libin |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $H$ be a semisimple Hopf algebra over an algebraically closed field $\mathbbm{k}$ of characteristic $p>\dim_{\mathbbm{k}}(H)^{1/2}$ and $p\nmid 2\dim_{\mathbbm{k}}(H)$. In this paper, we consider the smash product semisimple Hopf algebra $H\#\mathbbm{k}G$, where $G$ is a cyclic group of order $n:=2\dim_{\mathbbm{k}}(H)$. Using irreducible representations of $H$ and those of $\mathbbm{k}G$, we determine all non-isomorphic irreducible representations of $H\#\mathbbm{k}G$. There is a close relationship between the Grothendieck algebra $(G_0(H\#\mathbbm{k}G)\otimes_{\mathbb{Z}}\mathbbm{k},*)$ of $H\#\mathbbm{k}G$ and the Grothendieck algebra $(G_0(H)\otimes_{\mathbb{Z}}\mathbbm{k},*)$ of $H$. To establish this connection, we endow with a new multiplication operator $\star$ on $G_0(H)\otimes_{\mathbb{Z}}\mathbbm{k}$ and show that the Grothendieck algebra $(G_0(H\#\mathbbm{k}G)\otimes_{\mathbb{Z}}\mathbbm{k},\ast)$ is isomorphic to the direct sum of $(G_0(H)\otimes_{\mathbb{Z}}\mathbbm{k},*)^{\oplus\frac{n}{2}}$ and $(G_0(H)\otimes_{\mathbb{Z}}\mathbbm{k},\star)^{\oplus\frac{n}{2}}$. Comment: 14 pages. Any comments and suggestions will be appreciated |
Databáze: | arXiv |
Externí odkaz: |