The Eigenvalue Problem of Nonlinear Schr\'odinger Equation at Dirac Points of Honeycomb Lattice
Autor: | Chen, Yejia, Peng, Ruihan, Fu, Qidong, Ye, Fangwei, Luo, Weidong |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We give a rigorous deduction of the eigenvalue problem of the nonlinear Schr\"odinger equation (NLS) at Dirac Points for potential of honeycomb lattice symmetry. Based on a bootstrap method, we observe the bifurcation of the eigenfunctions into eight distinct modes from the two-dimensional degenerated eigenspace of the regressive linear Schr\"odinger equation. We give the existence, the way of construction, uniqueness in $H^2$ space and the $C^\infty$ continuity of these eigenfunctions. Comment: 28 pages |
Databáze: | arXiv |
Externí odkaz: |