Homological properties of 0-Hecke modules for dual immaculate quasisymmetric functions
Autor: | Choi, Seung-Il, Kim, Young-Hun, Nam, Sun-Young, Oh, Young-Tak |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $n$ be a nonnegative integer. For each composition $\alpha$ of $n$, Berg $\textit{et al.}$ introduced a cyclic indecomposable $H_n(0)$-module $\mathcal{V}_\alpha$ with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study $\mathcal{V}_\alpha$'s from the homological viewpoint. To be precise, we construct a minimal projective presentation of $\mathcal{V}_\alpha$ and a minimal injective presentation of $\mathcal{V}_\alpha$ as well. Using them, we compute ${\rm Ext}^1_{H_n(0)}(\mathcal{V}_\alpha, {\bf F}_\beta)$ and ${\rm Ext}^1_{H_n(0)}( {\bf F}_\beta, \mathcal{V}_\alpha)$, where ${\bf F}_\beta$ is the simple $H_n(0)$-module attached to a composition $\beta$ of $n$. We also compute ${\rm Ext}_{H_n(0)}^i(\mathcal{V}_\alpha,\mathcal{V}_{\beta})$ when $i=0,1$ and $\beta \le_l \alpha$, where $\le_l$ represents the lexicographic order on compositions. Comment: 44 pages, to be published in Forum of Math: Sigma |
Databáze: | arXiv |
Externí odkaz: |