Chiral Ising Gross-Neveu criticality of a single Dirac cone: A quantum Monte Carlo study

Autor: Tabatabaei, S. Mojtaba, Negari, Amir-Reza, Maciejko, Joseph, Vaezi, Abolhassan
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. Lett. 128, 225701 (2022)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevLett.128.225701
Popis: We perform large-scale quantum Monte Carlo simulations of SLAC fermions on a two-dimensional square lattice at half filling with a single Dirac cone with $N=2$ spinor components and repulsive on-site interactions. Despite the presence of a sign problem, we accurately identify the critical interaction strength $U_c = 7.28 \pm 0.02$ in units of the hopping amplitude, for a continuous quantum phase transition between a paramagnetic Dirac semimetal and a ferromagnetic insulator. Using finite-size scaling, we extract the critical exponents for the corresponding $N=2$ chiral Ising Gross-Neveu universality class: the inverse correlation length exponent $\nu^{-1} = 1.19 \pm 0.03$, the order parameter anomalous dimension $\eta_{\phi} = 0.31 \pm 0.01$, and the fermion anomalous dimension $\eta_{\psi} = 0.136 \pm 0.005$.
Comment: Accepted for publication in Physical Review Letters
Databáze: arXiv