Fundamental properties of Cauchy--Szeg\H{o} projection on quaternionic Siegel upper half space and applications

Autor: Chang, Der-Chen, Duong, Xuan Thinh, Li, Ji, Wang, Wei, Wu, Qingyan
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We investigate the Cauchy--Szeg\H{o} projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy--Szeg\H{o} kernel and prove that the Cauchy--Szeg\H{o} kernel is non-zero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy--Szeg\H{o} projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space $ H^p$ on quaternionic Siegel upper half space for $2/3
Databáze: arXiv