Fundamental properties of Cauchy--Szeg\H{o} projection on quaternionic Siegel upper half space and applications
Autor: | Chang, Der-Chen, Duong, Xuan Thinh, Li, Ji, Wang, Wei, Wu, Qingyan |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate the Cauchy--Szeg\H{o} projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy--Szeg\H{o} kernel and prove that the Cauchy--Szeg\H{o} kernel is non-zero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy--Szeg\H{o} projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space $ H^p$ on quaternionic Siegel upper half space for $2/3
|
Databáze: | arXiv |
Externí odkaz: |