Autor: |
Imolay, András, Karl, János, Nagy, Zoltán Lóránt, Váli, Benedek |
Rok vydání: |
2021 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We consider a natural generalisation of Tur\'an's forbidden subgraph problem and the Ruzsa-Szemer\'edi problem by studying the maximum number $ex_F(n,G)$ of edge-disjoint copies of a fixed graph $F$ can be placed on an $n$-vertex ground set without forming a subgraph $G$ whose edges are from different $F$-copies. We determine the pairs $\{F, G\}$ for which the order of magnitude of $ex_F(n,G)$ is quadratic and prove several asymptotic results using various tools from the regularity lemma and supersaturation to graph packing results. |
Databáze: |
arXiv |
Externí odkaz: |
|