The wave front set correspondence for dual pairs with one member compact

Autor: McKee, M., Pasquale, A., Przebinda, T.
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Let W be a real symplectic space and (G,G') an irreducible dual pair in Sp(W), in the sense of Howe, with G compact. Let $\widetilde{\mathrm{G}}$ be the preimage of G in the metaplectic group $\widetilde{\mathrm{Sp}}(\mathrm{W})$. Given an irreducible unitary representation $\Pi$ of $\widetilde{\mathrm{G}}$ that occurs in the restriction of the Weil representation to $\widetilde{\mathrm{G}}$, let $\Theta_\Pi$ denote its character. We prove that, for the embedding $T$ of $\widetilde{\mathrm{Sp}}(\mathrm{W})$ in the space of tempered distributions on W given by the Weil representation, the distribution $T(\check\Theta_\Pi)$ has an asymptotic limit. This limit is an orbital integral over a nilpotent orbit $\mathcal O_m\subseteq \mathrm{W}$. The closure of the image of $\mathcal O_m$ in $\mathfrak{g}'$ under the moment map is the wave front set of $\Pi'$, the representation of $\widetilde{\mathrm{G}'}$ dual to $\Pi$.
Comment: The present paper subsumes and extends sections 5 and 8 of the (unpublished) preprint arXiv:1405.2431
Databáze: arXiv