Minimal K\'ahler submanifolds in product of space forms
Autor: | de Carvalho, Alcides, Domingos, Iury |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this article, we study minimal isometric immersions of K\"ahler manifolds into product of two real space forms. We analyse the obstruction conditions to the existence of pluriharmonic isometric immersions of a K\"ahler manifold into those spaces and we prove that the only ones into $\mathbb{S}^{m-1}\times\mathbb{R}$ and $\mathbb{H}^{m-1}\times \mathbb{R}$ are the minimal isometric immersions of Riemannian surfaces. Futhermore, we show that the existence of a minimal isometric immersion of a K\"ahler manifold $M^{2n}$ into $\mathbb{S}^{m-1}\times\mathbb{R}$ and $\mathbb{S}^{m-k}\times \mathbb{H}^k$ imposes strong restrictions on the Ricci and scalar curvatures of $M^{2n}$. In this direction, we characterise some cases as either isometric immersions with parallel second fundamental form or anti-pluriharmonic isometric immersions. Comment: Suggestions and comments are of course welcome |
Databáze: | arXiv |
Externí odkaz: |