Nonparametric Estimation of the Random Coefficients Model in Python

Autor: Mendoza, Emil, Dunker, Fabian, Reale, Marco
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: We present $\textbf{PyRMLE}$, a Python module that implements Regularized Maximum Likelihood Estimation for the analysis of Random Coefficient models. $\textbf{PyRMLE}$ is simple to use and readily works with data formats that are typical to Random Coefficient problems. The module makes use of Python's scientific libraries $\textbf{NumPy}$ and $\textbf{SciPy}$ for computational efficiency. The main implementation of the algorithm is executed purely in Python code which takes advantage of Python's high-level features.
Comment: 30 pages, 22 figures
Databáze: arXiv