Nonparametric Estimation of the Random Coefficients Model in Python
Autor: | Mendoza, Emil, Dunker, Fabian, Reale, Marco |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We present $\textbf{PyRMLE}$, a Python module that implements Regularized Maximum Likelihood Estimation for the analysis of Random Coefficient models. $\textbf{PyRMLE}$ is simple to use and readily works with data formats that are typical to Random Coefficient problems. The module makes use of Python's scientific libraries $\textbf{NumPy}$ and $\textbf{SciPy}$ for computational efficiency. The main implementation of the algorithm is executed purely in Python code which takes advantage of Python's high-level features. Comment: 30 pages, 22 figures |
Databáze: | arXiv |
Externí odkaz: |