Uniform Roe algebras of uniformly locally finite metric spaces are rigid
Autor: | Baudier, Florent P., Braga, Bruno de Mendonça, Farah, Ilijas, Khukhro, Ana, Vignati, Alessandro, Willett, Rufus |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00222-022-01140-x |
Popis: | We show that if $X$ and $Y$ are uniformly locally finite metric spaces whose uniform Roe algebras, $\cstu(X)$ and $\cstu(Y)$, are isomorphic as \cstar-algebras, then $X$ and $Y$ are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between $X$ and $Y$ is equivalent to Morita equivalence between $\cstu(X)$ and $\cstu(Y)$. As an application, we obtain that if $\Gamma$ and $\Lambda$ are finitely generated groups, then the crossed products $\ell_\infty(\Gamma)\rtimes_r\Gamma$ and $ \ell_\infty(\Lambda)\rtimes_r\Lambda$ are isomorphic if and only if $\Gamma$ and $\Lambda$ are bi-Lipschitz equivalent. Comment: 26 pages, second version with revisions |
Databáze: | arXiv |
Externí odkaz: |