A Study into Pre-training Strategies for Spoken Language Understanding on Dysarthric Speech

Autor: Wang, Pu, BabaAli, Bagher, Van hamme, Hugo
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: End-to-end (E2E) spoken language understanding (SLU) systems avoid an intermediate textual representation by mapping speech directly into intents with slot values. This approach requires considerable domain-specific training data. In low-resource scenarios this is a major concern, e.g., in the present study dealing with SLU for dysarthric speech. Pretraining part of the SLU model for automatic speech recognition targets helps but no research has shown to which extent SLU on dysarthric speech benefits from knowledge transferred from other dysarthric speech tasks. This paper investigates the efficiency of pre-training strategies for SLU tasks on dysarthric speech. The designed SLU system consists of a TDNN acoustic model for feature encoding and a capsule network for intent and slot decoding. The acoustic model is pre-trained in two stages: initialization with a corpus of normal speech and finetuning on a mixture of dysarthric and normal speech. By introducing the intelligibility score as a metric of the impairment severity, this paper quantitatively analyzes the relation between generalization and pathology severity for dysarthric speech.
Comment: Accepted by Interspeech 2021
Databáze: arXiv