Kernel based Dirichlet sequences

Autor: Berti, Patrizia, Dreassi, Emanuela, Leisen, Fabrizio, Pratelli, Luca, Rigo, Pietro
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
Popis: Let $X=(X_1,X_2,\ldots)$ be a sequence of random variables with values in a standard space $(S,\mathcal{B})$. Suppose \begin{gather*} X_1\sim\nu\quad\text{and}\quad P\bigl(X_{n+1}\in\cdot\mid X_1,\ldots,X_n\bigr)=\frac{\theta\nu(\cdot)+\sum_{i=1}^nK(X_i)(\cdot)}{n+\theta}\quad\quad\text{a.s.} \end{gather*} where $\theta>0$ is a constant, $\nu$ a probability measure on $\mathcal{B}$, and $K$ a random probability measure on $\mathcal{B}$. Then, $X$ is exchangeable whenever $K$ is a regular conditional distribution for $\nu$ given any sub-$\sigma$-field of $\mathcal{B}$. Under this assumption, $X$ enjoys all the main properties of classical Dirichlet sequences, including Sethuraman's representation, conjugacy property, and convergence in total variation of predictive distributions. If $\mu$ is the weak limit of the empirical measures, conditions for $\mu$ to be a.s. discrete, or a.s. non-atomic, or $\mu\ll\nu$ a.s., are provided. Two CLT's are proved as well. The first deals with stable convergence while the second concerns total variation distance.
Databáze: arXiv