Generalized tournament matrices with the same principal minors

Autor: Boussaïri, Abderrahim, Chaïchaâ, Abdelhak, Chergui, Brahim, Lakhlifi, Soufiane
Rok vydání: 2021
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1080/03081087.2021.1917500
Popis: A generalized tournament matrix $M$ is a nonnegative matrix that satisfies $M+M^{t}=J-I$, where $J$ is the all ones matrix and $I$ is the identity matrix. In this paper, a characterization of generalized tournament matrices with the same principal minors of orders $2$, $3$, and $4$ is given. In particular, it is proven that the principal minors of orders $2$, $3$, and $4$ determine the rest of the principal minors.
Databáze: arXiv