Generalized tournament matrices with the same principal minors
Autor: | Boussaïri, Abderrahim, Chaïchaâ, Abdelhak, Chergui, Brahim, Lakhlifi, Soufiane |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1080/03081087.2021.1917500 |
Popis: | A generalized tournament matrix $M$ is a nonnegative matrix that satisfies $M+M^{t}=J-I$, where $J$ is the all ones matrix and $I$ is the identity matrix. In this paper, a characterization of generalized tournament matrices with the same principal minors of orders $2$, $3$, and $4$ is given. In particular, it is proven that the principal minors of orders $2$, $3$, and $4$ determine the rest of the principal minors. |
Databáze: | arXiv |
Externí odkaz: |