Autor: |
Ikuta, Daijo, Ohtani, Eiji, Fukui, Hiroshi, Sakamaki, Tatsuya, Heid, Rolf, Ishikawa, Daisuke, Baron, Alfred Q. R. |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Sci. Adv. 9, eadh8706 (2023) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1126/sciadv.adh8706 |
Popis: |
An accurate pressure scale is a fundamental requirement to understand planetary interiors. Here, we establish a primary pressure scale extending to the multi-megabar pressures of the Earth's core, by combined measurement of the acoustic velocities and the density from a rhenium sample in a diamond anvil cell using inelastic x-ray scattering and x-ray diffraction. Our scale agrees well with previous primary scales and shock Hugoniots in each experimental pressure range, and reveals that previous scales have overestimated laboratory pressures by at least 20% at 230 gigapascals. It suggests that the light element content in the Earth's inner core (the density deficit relative to iron) is likely to be double what was previously estimated, or the Earth's inner core temperature is much higher than expected, or some combination thereof. |
Databáze: |
arXiv |
Externí odkaz: |
|