Collisions Between Ultracold Molecules and Atoms in a Magnetic Trap

Autor: Jurgilas, S., Chakraborty, A., Rich, C. J. H., Caldwell, L., Williams, H. J., Fitch, N. J., Sauer, B. E., Frye, Matthew D., Hutson, Jeremy M., Tarbutt, M. R.
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. Lett. 126, 153401 (2021)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevLett.126.153401
Popis: We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally excited state, they collide inelastically with a rate coefficient of $k_2 = (6.6 \pm 1.5) \times 10^{-11}$ cm$^{3}$/s at temperatures near 100~$\mu$K. We attribute this to rotation-changing collisions. When the molecules are in the ground rotational state we see no inelastic loss and set an upper bound on the spin relaxation rate coefficient of $k_2 < 5.8 \times 10^{-12}$ cm$^{3}$/s with 95% confidence. We compare these measurements to the results of a single-channel loss model based on quantum defect theory. The comparison suggests a short-range loss parameter close to unity for rotationally excited molecules, but below 0.04 for molecules in the rotational ground state.
Comment: 9 pages, 6 figures. Minor changes following review
Databáze: arXiv