Determinant of Friederichs Dirichlet Laplacians on $2$-dimensional hyperbolic cones
Autor: | Kalvin, Victor |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0219199721501078 |
Popis: | We explicitly express the spectral determinant of Friederichs Dirichlet Laplacians on the 2-dimensional hyperbolic (Gaussian curvature -1) cones in terms of the cone angle and the geodesic radius of the boundary. The related results in the recent paper "Riemann-Roch isometries in the non-compact orbifold setting," J. Eur. Math. Soc. 22 (2020) by G. Freixas i Montplet and A. von Pippich turn out to be incorrect. |
Databáze: | arXiv |
Externí odkaz: |