On the absence of zero-temperature limit of equilibrium states for finite-range interactions on the lattice $\mathbb{Z}^2$
Autor: | Chazottes, J. -R., Shinoda, M. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct finite-range interactions on $\mathcal{S}^{\mathbb{Z}^2}$, where $\mathcal{S}$ is a finite set, for which the associated equilibrium states (i.e., the shift-invariant Gibbs states) fail to converge as temperature goes to zero. More precisely, if we pick any one-parameter family $(\mu_\beta)_{\beta>0}$ in which $\mu_\beta$ is an equilibrium state at inverse temperature $ \beta$ for this interaction, then $\lim_{\beta\to\infty}\mu_\beta$ does not exist. This settles a question posed by the first author and Hochman who obtained such a non-convergence behavior when $d\geq 3$, $d$ being the dimension of the lattice. Comment: 25 pages, 8 figures |
Databáze: | arXiv |
Externí odkaz: |