A Tauberian Approach to Weyl's Law for the Kohn Laplacian on Spheres
Autor: | Bosch, Henry, Gonzales, Tyler, Spinelli, Kamryn, Udell, Gabe, Zeytuncu, Yunus E. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We compute the leading coefficient in the asymptotic expansion of the eigenvalue counting function for the Kohn Laplacian on the spheres. We express the coefficient as an infinite sum and as an integral. |
Databáze: | arXiv |
Externí odkaz: |