On compactness and $L^p$-regularity in the $\overline{\partial}$-Neumann problem
Autor: | Sahutoglu, Sonmez, Zeytuncu, Yunus E. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Bull. Lond. Math. Soc. 53, 2021, no. 5 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/blms.12502 |
Popis: | Let $\Omega$ be a $C^4$-smooth bounded pseudoconvex domain in $\mathbb{C}^2$. We show that if the $\overline{\partial}$-Neumann operator $N_1$ is compact on $L^2_{(0,1)}(\Omega)$ then the embedding operator $\mathcal{J}:Dom(\overline{\partial})\cap Dom(\overline{\partial}^*) \to L^2_{(0,1)}(\Omega)$ is $L^p$-regular for all $2\leq p<\infty$. Comment: Minor changes. To appear in Bull. Lond. Math. Soc |
Databáze: | arXiv |
Externí odkaz: |