Spectral cut-off regularisation for density estimation under multiplicative measurement errors
Autor: | Miguel, Sergio Brenner, Comte, Fabienne, Johannes, Jan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the non-parametric estimation of an unknown density f with support on R+ based on an i.i.d. sample with multiplicative measurement errors. The proposed fully data driven procedure is based on the estimation of the Mellin transform of the density f , a regularisation of the inverse of the Mellin transform by a spectral cut-off and a data-driven model selection in order to deal with the upcoming bias-variance trade-off. We introduce and discuss further Mellin-Sobolev spaces which characterize the regularity of the unknown density f through the decay of its Mellin transform. Additionally, we show minimax-optimality over Mellin-Sobolev spaces of the data-driven density estimator and hence its adaptivity. Comment: 22 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |