Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design

Autor: Balsara, Dinshaw S., Käppeli, Roger, Boscheri, Walter, Dumbser, Michael
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Several important PDE systems, like magnetohydrodynamics and computational electrodynamics, are known to support involutions where the divergence of a vector field evolves in divergence-free or divergence constraint-preserving fashion. Recently, new classes of PDE systems have emerged for hyperelasticity, compressible multiphase flows, so-called first order reductions of the Einstein field equations, or a novel first order hyperbolic reformulation of Schr\"odinger's equation, to name a few, where the involution in the PDE supports curl-free or curl constraint-preserving evolution of a vector field. Since mimetic numerical schemes for the solution of the former class of PDEs are well-developed, we draw guidance from them for the solution of the latter class of PDEs. We show that a study of the curl constraint-preserving reconstruction gives us a great deal of insight into the design of consistent, mimetic schemes for these involutionary PDEs. The importance of multidimensional Riemann solvers in facilitating the design of such schemes is also documented. We study the problem of curl constraint-preserving reconstruction as it pertains to the design of mimetic discontinuous Galerkin (DG) and finite volume (FV) schemes for PDEs that support such an involution. This is done for two and three dimensional structured mesh problems where we deliver closed form expressions for the reconstruction. The role that this reconstruction plays in the curl-free, or curl-preserving prolongation of vector fields in adaptive mesh refinement (AMR) is also discussed. In two dimensions, a von Neumann analysis of structure-preserving DG-like schemes that mimetically satisfy the curl constraints, is also presented. Numerical results are also presented to show that the schemes meet their design accuracy.
Databáze: arXiv