A combinatorial approach to Donkin-Koppinen filtrations of general linear supergroups

Autor: Marko, Frantisek
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: For a general linear supergroup $G=GL(m|n)$, we consider a natural isomorphism $\phi: G \to U^-\times G_{ev} \times U^+$, where $G_{ev}$ is the even subsupergroup of $G$, and $U^-$, $U^+$ are appropriate odd unipotent subsupergroups of $G$. We compute the action of odd superderivations on the images $\phi^*(x_{ij})$ of the generators of $K[G]$. We describe a specific ordering of the dominant weights $X(T)^+$ of $GL(m|n)$ for which there exists a Donkin-Koppinen filtration of the coordinate algebra $K[G]$. Let $\Gamma$ be a finitely generated ideal $\Gamma$ of $X(T)^+$ and $O_{\Gamma}(K[G])$ be the largest $\Gamma$-subsupermodule of $K[G]$ having simple composition factors of highest weights $\lambda\in \Gamma$. We apply combinatorial techniques, using generalized bideterminants, to determine a basis of $G$-superbimodules appearing in Donkin-Koppinen filtration of $O_{\Gamma}(K[G])$.
Databáze: arXiv