Autor: |
Kamčev, Nina, Liebenau, Anita, Wormald, Nick |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Advances in Combinatorics 2022:1, 36pp |
Druh dokumentu: |
Working Paper |
DOI: |
10.19086/aic.32357 |
Popis: |
We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs on $n$ vertices provided that $dn\le c\binom{n}{k}$ for a constant $c>0$, and $3 \leq k < n^C$ for any $C<1/9.$ Our results relate the degree sequence of a random $k$-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author. |
Databáze: |
arXiv |
Externí odkaz: |
|