Asymptotic enumeration of hypergraphs by degree sequence

Autor: Kamčev, Nina, Liebenau, Anita, Wormald, Nick
Rok vydání: 2020
Předmět:
Zdroj: Advances in Combinatorics 2022:1, 36pp
Druh dokumentu: Working Paper
DOI: 10.19086/aic.32357
Popis: We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs on $n$ vertices provided that $dn\le c\binom{n}{k}$ for a constant $c>0$, and $3 \leq k < n^C$ for any $C<1/9.$ Our results relate the degree sequence of a random $k$-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author.
Databáze: arXiv