Optical Identification of Materials Transformations in Oxide Thin Films

Autor: Sutherland, Duncan R., Connolly, Aine Boyer, Amsler, Maximilian, Chang, Ming-Chiang, Gann, Katie Rose, Gupta, Vidit, Ament, Sebastian, Guevarra, Dan, Gregoire, John M., Gomes, Carla P., van Dover, R. B., Thompson, Michael O.
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization methods are limited by speed, cost, availability, and/or resolution. To make efficient use of these methods, there is value in developing approaches for identifying critical compositions and conditions to be used as a-priori knowledge for follow-up characterization with high-precision techniques, such as micron-scale synchrotron based X-ray diffraction (XRD). Here we demonstrate the use of optical microscopy and reflectance spectroscopy to identify likely phase-change boundaries in thin film libraries. These methods are used to delineate possible metastable phase boundaries following lateral-gradient Laser Spike Annealing (lg-LSA) of oxide materials. The set of boundaries are then compared with definitive determinations of structural transformations obtained using high-resolution XRD. We demonstrate that the optical methods detect more than 95% of the structural transformations in a composition-gradient La-Mn-O library and a Ga$_2$O$_3$ sample, both subject to an extensive set of lg-LSA anneals. Our results provide quantitative support for the value of optically-detected transformations as a priori data to guide subsequent structural characterization, ultimately accelerating and enhancing the efficient implementation of $\mu$m-resolution XRD experiments.
Databáze: arXiv