On the $L^1$ and pointwise divergence of continuous functions

Autor: Gryszka, Karol, Pasteczka, Paweł
Rok vydání: 2020
Předmět:
Zdroj: Period. Math. Hungar. 87 (1), 75-85(2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s10998-022-00500-7
Popis: For a family of continuous functions $f_1,f_2,\dots \colon I \to \mathbb{R}$ ($I$ is a fixed interval) with $f_1\le f_2\le \dots$ define a set $$ I_f:=\big\{x \in I \colon \lim_{n \to \infty} f_n(x)=+\infty\big\}.$$ We study the properties of the family of all admissible $I_f$-s and the family of all admissible $I_f$-s under the additional assumption $$ \lim_{n \to \infty} \int_x^y f_n(t)\:dt=+\infty \quad \text{ for all }x,y \in I\text{ with }x
Databáze: arXiv