Quantum coherence and speed limit in the mean-field Dicke model of superradiance

Autor: Rossatto, D. Z., Pires, D. P., de Paula, F. M., Neto, O. P. de Sá
Rok vydání: 2020
Předmět:
Zdroj: Phys. Rev. A 102, 053716 (2020)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevA.102.053716
Popis: Dicke superrandiance is a cooperative phenomenon which arises from the collective coupling of an ensemble of atoms to the electromagnetic radiation. Here we discuss the quantifying of quantum coherence for the Dicke model of superradiance in the mean-field approximation. We found the single-atom $l_1$-norm of coherence is given by the square root of the normalized average intensity of radiation emitted by the superradiant system. This validates quantum coherence as a useful figure of merit towards the understanding of superradiance phenomenon in the mean-field approach. In particular, this result suggests probing the single-atom coherence through the radiation intensity in superradiant systems, which might be useful in experimental realizations where is unfeasible to address atoms individually. Furthermore, given the nonlinear unitary dynamics of the time-dependent single-atom state that effectively describes the system of $N$ atoms, we analyze the quantum speed limit time and its interplay with the $l_1$-norm of coherence. We verify the quantum coherence speeds up the evolution of the superradiant system, i.e., the more coherence stored on the single-atom state, the faster the evolution. These findings unveil the role played by quantum coherence in superradiant systems, which in turn could be of interest for communities of both condensed matter physics and quantum optics.
Comment: 9 pages, 1 figure. Close to published version
Databáze: arXiv