R\'enyi and von Neumann entropies of thermal state in Generalized Uncertainty Principle-corrected harmonic oscillator
Autor: | Kim, MuSeong, Hwang, Mi-Ra, Jung, Eylee, Park, DaeKil |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Mod. Phys. Lett. A 36 (2021) 2150250 |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0217732321502503 |
Popis: | The R\'{e}nyi and von Neumann entropies of the thermal state in the generalized uncertainty principle (GUP)-corrected single harmonic oscillator system are explicitly computed within the first order of the GUP parameter $\alpha$. While the von Neumann entropy with $\alpha = 0$ exhibits a monotonically increasing behavior in external temperature, the nonzero GUP parameter makes the decreasing behavior of the von Neumann entropy at the large temperature region. As a result, the von Neumann entropy is maximized at the finite temperature if $\alpha \neq 0$. The R\'{e}nyi entropy $S_{\gamma}$ with nonzero $\alpha$ also exhibits similar behavior at the large temperature region. In this region the R\'{e}nyi entropy exhibit decreasing behavior with increasing the temperature. The decreasing rate becomes larger when the order of the R\'{e}nyi entropy $\gamma$ is smaller. Comment: 18 pages, 5 figures V2: 22 pages, will appear in MPLA |
Databáze: | arXiv |
Externí odkaz: |