Integer colorings with forbidden rainbow sums
Autor: | Cheng, Yangyang, Jing, Yifan, Li, Lina, Wang, Guanghui, Zhou, Wenling |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a set of positive integers $A \subseteq [n]$, an $r$-coloring of $A$ is rainbow sum-free if it contains no rainbow Schur triple. In this paper we initiate the study of the rainbow Erd\H{o}s-Rothchild problem in the context of sum-free sets, which asks for the subsets of $[n]$ with the maximum number of rainbow sum-free $r$-colorings. We show that for $r=3$, the interval $[n]$ is optimal, while for $r\geq8$, the set $[\lfloor n/2 \rfloor, n]$ is optimal. We also prove a stability theorem for $r\geq4$. The proofs rely on the hypergraph container method, and some ad-hoc stability analysis. Comment: 23 pages, revised version incorporating referee comments, to appear in J. Comb. Theory Series A |
Databáze: | arXiv |
Externí odkaz: |