Certifiably Optimal Monocular Hand-Eye Calibration

Autor: Wise, Emmett, Giamou, Matthew, Khoubyarian, Soroush, Grover, Abhinav, Kelly, Jonathan
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1109/MFI49285.2020.9235219
Popis: Correct fusion of data from two sensors is not possible without an accurate estimate of their relative pose, which can be determined through the process of extrinsic calibration. When two or more sensors are capable of producing their own egomotion estimates (i.e., measurements of their trajectories through an environment), the 'hand-eye' formulation of extrinsic calibration can be employed. In this paper, we extend our recent work on a convex optimization approach for hand-eye calibration to the case where one of the sensors cannot observe the scale of its translational motion (e.g., a monocular camera observing an unmapped environment). We prove that our technique is able to provide a certifiably globally optimal solution to both the known- and unknown-scale variants of hand-eye calibration, provided that the measurement noise is bounded. Herein, we focus on the theoretical aspects of the problem, show the tightness and stability of our solution, and demonstrate the optimality and speed of our algorithm through experiments with synthetic data.
Comment: In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration (MFI'20), Karlsruhe, Germany, Sep. 12-16, 2020
Databáze: arXiv