Polynomial ring representations of endomorphisms of exterior powers
Autor: | Behzad, Ommolbanin, Contiero, Andre, Gatto, Letterio, Martins, Renato Vidal |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A polynomial ring with rational coefficients is an irreducible representation of Lie algebras of endomorphisms of exterior powers of a infinite countable dimensional $\mathbb{Q}$-vector space. We give an explicit description of it, using suitable vertex operators on exterior algebras, which mimick those occurring in the bosonic vertex representation of the Lie algebra $gl_\infty$, due to Date--Jimbo--Kashiwara and Miwa (DJKM). Comment: few typos corrected, references updated, comments are very welcome |
Databáze: | arXiv |
Externí odkaz: |