Polynomial ring representations of endomorphisms of exterior powers

Autor: Behzad, Ommolbanin, Contiero, Andre, Gatto, Letterio, Martins, Renato Vidal
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: A polynomial ring with rational coefficients is an irreducible representation of Lie algebras of endomorphisms of exterior powers of a infinite countable dimensional $\mathbb{Q}$-vector space. We give an explicit description of it, using suitable vertex operators on exterior algebras, which mimick those occurring in the bosonic vertex representation of the Lie algebra $gl_\infty$, due to Date--Jimbo--Kashiwara and Miwa (DJKM).
Comment: few typos corrected, references updated, comments are very welcome
Databáze: arXiv