Autor: |
Han, J. Z., Qin, H. R., Guo, L. M., Xin, N. C., Hu, H. X., Yu, Y. M., Dzuba, V. A., Zhang, J. W., Wang, L. J. |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We report sympathetic cooling of $^{113}$Cd$^+$ by laser-cooled $^{40}$Ca$^+$ in a linear Paul trap for microwave clocks. Long-term low-temperature confinement of $^{113}$Cd$^+$ ions was achieved. The temperature of these ions was measured at $90(10)$ mK, and the corresponding uncertainty arising from the second-order Doppler shifts was estimated to a level of $2\times10^{-17}$. Up to $4.2\times10^5$ Cd$^+$ ions were confined in the trap, and the confinement time constant was measured to be 84 hours. After three hours of confinement, there were still $10^5$ Cd$^+$ ions present, indicating that this Ca$^+$--Cd$^+$ dual ion system is surprisingly stable. The ac Stark shift was induced by the Ca$^+$ lasers and fluorescence, which was carefully estimated to an accuracy of $5.4(0.5)\times10^{-17}$ using a high-accuracy \textit{ab initio} approach. The Dick-effect-limited Allan deviation was also deduced because deadtimes were shorter. These results indicate that a microwave clock based on this sympathetic cooling scheme holds promise in providing ultra-high frequency accuracy and stability. |
Databáze: |
arXiv |
Externí odkaz: |
|