Vertical quasi-isometries and branched quasisymmetries
Autor: | Lindquist, Jeff, Pankka, Pekka |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce a class of mappings called vertical quasi-isometries and show that branched quasisymmetries $X\to Y$ of Guo and Williams between compact, bounded turning metric doubling spaces admit natural vertically quasi-isometric extensions $\widehat X\to \widehat Y$ between hyperbolic fillings $\widehat X$ and $\widehat Y$ of $X$ and $Y$, respectively. We also give a converse for this result by showing that a finite multiplicity vertical quasi-isometry $\widehat X \to \widehat Y$ between hyperbolic fillings induces a branched quasisymmetry $X \to Y$. Comment: 50 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |