Online Learning in Planar Pushing with Combined Prediction Model

Autor: Gao, Huidong, Ouyang, Yi, Tomizuka, Masayoshi
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Pushing is a useful robotic capability for positioning and reorienting objects. The ability to accurately predict the effect of pushes can enable efficient trajectory planning and complicated object manipulation. Physical prediction models for planar pushing have long been established, but their assumptions and requirements usually don't hold in most practical settings. Data-driven approaches can provide accurate predictions for offline data, but they often have generalizability issues. In this paper, we propose a combined prediction model and an online learning framework for planar push prediction. The combined model consists of a neural network module and analytical components with a low-dimensional parameter. We train the neural network offline using pre-collected pushing data. In online situations, the low-dimensional analytical parameter is learned directly from online pushes to quickly adapt to the new environments. We test our combined model and learning framework on real pushing experiments. Our experimental results show that our model is able to quickly adapt to new environments while achieving similar final prediction performance as that of pure neural network models.
Databáze: arXiv