A lower semicontinuity result for linearised elasto-plasticity coupled with damage in $W^{1,\gamma}$, $\gamma>1$

Autor: Crismale, Vito, Orlando, Gianluca
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We prove the lower semicontinuity of functionals of the form \[ \int \limits_\Omega \! V(\alpha) \, \mathrm{d} |\mathrm{E} u| \, , \] with respect to the weak converge of $\alpha$ in $W^{1,\gamma}(\Omega)$, $\gamma > 1$, and the weak* convergence of $u$ in $BD(\Omega)$, where $\Omega \subset \mathbb{R}^n$. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents $\gamma < n$.
Databáze: arXiv