The Witt group of real surfaces

Autor: Karoubi, Max, Weibel, Charles
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Let $V$ be an algebraic variety defined over $\mathbb R$, and $V_{top}$ the space of its complex points. We compare the algebraic Witt group $W(V)$ of symmetric bilinear forms on vector bundles over $V$, with the topological Witt group $WR(V_{top})$ of symmetric forms on Real vector bundles over $V_{top}$ in the sense of Atiyah, especially when $V$ is 2-dimensional. To do so, we develop topological tools to calculate $WR(V_{top})$, and to measure the difference between $W(V)$ and $WR(V_{top})$.
Databáze: arXiv