The Realization Problem for Finitely Generated Refinement Monoids
Autor: | Ara, Pere, Bosa, Joan, Pardo, Enrique |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that every finitely generated conical refinement monoid can be represented as the monoid $\mathcal V(R)$ of isomorphism classes of finitely generated projective modules over a von Neumann regular ring $R$. To this end, we use the representation of these monoids provided by adaptable separated graphs. Given an adaptable separated graph $(E, C)$ and a field $K$, we build a von Neumann regular $K$-algebra $Q_K (E, C)$ and show that there is a natural isomorphism between the separated graph monoid $M(E, C)$ and the monoid $\mathcal V(Q_K (E, C))$. Comment: Final version, accepted for publication in Selecta Mathematica |
Databáze: | arXiv |
Externí odkaz: |