Popis: |
Understanding the relationship between the structure and function of the human brain is one of the most important open questions in Neurosciences. In particular, Resting State Networks (RSN) and more specifically the Default Mode Network (DMN) of the brain, which are defined from the analysis of functional data lack a definitive justification consistent with the anatomical structure of the brain. In this work, we show that a possible connection may naturally rest on the idea that information flows in the brain through a neural message-passing dynamics between macroscopic structures, like those defined by the human connectome (HC). In our model, each brain region in the HC is assumed to have a binary behavior (active or not), the strength of interactions among them is encoded in the anatomical connectivity matrix defined by the HC, and the dynamics of the system is defined by a neural message-passing algorithm, Belief Propagation (BP), working near the critical point of the human connectome. We show that in the absence of direct external stimuli the BP algorithm converges to a spatial map of activations that is similar to the DMN. Moreover, we computed, using Susceptibility Propagation (SP), the matrix of correlations between the different regions and show that the modules defined by a clustering of this matrix resemble several Resting States Networks determined experimentally. Both results suggest that the functional DMN and RSNs can be seen as simple consequences of the anatomical structure of the brain and a neural message-passing dynamics between macroscopic regions. We then show preliminary results indicating our predictions on how functional DMN maps change when the anatomical brain network suffers structural anomalies, like in Alzheimers Disease and in lesions of the Corpus Callosum. |